
J. Fluid Mech. (2008), vol. 609, pp. 171–194. c© 2008 Cambridge University Press

doi:10.1017/S0022112008002280 Printed in the United Kingdom

171

Laws for third-order moments in homogeneous
anisotropic incompressible

magnetohydrodynamic turbulence

J. J. PODESTA
Space Science Center, University of New Hampshire, Durham, NH 03824, USA

(Received 9 August 2007 and in revised form 7 May 2008)

It is known that Kolmogorov’s four-fifths law for statistically homogeneous and
isotropic turbulence can be generalized to anisotropic turbulence. This fundamental
result for homogeneous anisotropic turbulence says that in the inertial range the
divergence of the vector third-order moment 〈|δv(r)|2δv(r)〉 is constant and is equal
to −4ε, where ε is the dissipation rate of the turbulence. This law can be extended
to incompressible magnetohydrodyamic (MHD) turbulence where statistical isotropy
is often not valid due, for example, to the presence of a large-scale magnetic field.
Laws for anisotropic incompressible MHD turbulence were first derived by Politano
and Pouquet. In this paper, the laws for vector third-order moments in homogeneous
non-isotropic incompressible MHD turbulence are derived by a technique due to
Frisch that clarifies the relationship between the energy flux in Fourier space and the
vector third-order moments in physical space. This derivation is different from the
original derivation of Politano and Pouquet which is based on the Kármán–Howarth
equation, and provides some new physical insights. Separate laws are derived for the
cascades of energy, cross-helicity and magnetic-helicity, the three ideal invariants of
incompressible MHD for flows in three dimensions. These laws are of fundamental
importance in the theory of MHD turbulence where non-isotropic turbulence is much
more prevalent than isotropic turbulence.

1. Introduction
One of the few rigorous results in the theory of homogeneous isotropic turbulence

for incompressible fluids is Kolmogorov’s four-fifths law (Kolmogorov 1941), valid in
the limit of large Reynolds number,

〈[δv‖(r)]3〉 = − 4
5
εr (1.1)

where the length scale r lies in the inertial range, δv‖(r) is the component of the
velocity fluctuation δv(r) = v(x + r) − v(x) in the direction of the displacement r , ε

is the average energy dissipation rate per unit mass, and angle brackets denote the
ensemble average. Kolmogorov’s four-fifths law tells us that in the inertial range, the
third-order moment of the parallel velocity fluctuation δv‖ is proportional to both
the displacement r and the dissipation rate ε with a constant of proportionality that
is determined by the theory to have the value −4/5.

Kolmogorov’s four-fifths law is a special case of the more general law for
homogeneous but not necessarily isotropic turbulence

∇ · F(r) = −4ε, (1.2)
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where

F(r) = 〈|δv(r)|2δv(r)〉 (1.3)

and |v|2 = v · v. The quantity F(r) is called the vector third-order moment of the
fluctuations. Equation (1.2) expresses the conservation of energy flux through the
inertial range and shall be called the law for the inertial range energy flux. The law
(1.2) is identical to equation (6.58) in Frisch (1995) and equation (22.15) on p. 402 of
Monin & Yaglom (1975) where it is credited to Monin (1959). Derivations of this law
have also been presented by Antonia et al. (1997) and by Hill (1997). It is important
to emphasize that the divergence law (1.2) applies to both isotropic and anisotropic
turbulence.

If the statistical properties of the turbulence are homogeneous and isotropic, then,
by symmetry, the vector F(r) must have the form

F(r) = Ar, (1.4)

where A is a scalar function of r · r . The inertial range is described by the behaviour
near r = 0 where, because F is differentiable, A is constant. Therefore, the substitution
of (1.4) into (1.2) yields the four-thirds law for homogeneous and isotropic turbulence

F(r) = − 4
3
εr. (1.5)

This equation says that the statistical third-order moment F(r) is proportional to the
displacement r , like the four-fifths law (1.1), but it is a vector relation and, therefore,
it contains information about both the parallel and perpendicular components of the
fluctuations. In fact, it contains Kolmogorov’s four-fifths law (1.1) as a special case.

The fundamental divergence law (1.2)–(1.3) can be extended from incompressible
hydrodynamics to incompressible magnetohydrodynamics (MHD) in a straightfor-
ward manner as first shown by Politano & Pouquet (1998a). Politano, Gomez &
Pouquet (2003) derived a similar law for the magnetic-helicity. Perhaps unwittingly,
Politano & Pouquet (1998a) do not mention the important fact that their equation (3)
is valid for anisotropic turbulence; but this fact is crucial since MHD turbulence
is generally anisotropic as shown by laboratory experiments, theoretical studies
(Montgomery & Turner 1981, 1982), numerical simulations (Shebalin, Matthaeus
& Montgomery 1983; Oughton, Priest & Matthaeus 1994; Matthaeus et al. 1996a),
and solar wind observations (Matthaeus, Bieber & Zank 1996b). Instead, Politano
& Pouquet (1998a, b) immediately introduced the assumption of isotropic turbulence
which obscured their more general result. It is important to emphasize that this more
general result has great potential for applications to anisotropic plasma turbulence.

Because of the fundamental importance of the Politano & Pouquet laws for MHD
turbulence, it is of interest to derive these laws in different ways. More than a
theoretical exercise, this is useful to elucidate the physics and may possibly open the
door to new lines of investigation. The derivation by Politano & Pouquet (1998a, b)
is based on the anisotropic variant of the Kármán–Howarth equation for MHD and
is similar to the derivation by Antonia et al. (1997) in the hydrodynamic case. In the
present study, the MHD laws are derived by generalizing the method employed by
Frisch (1995) from incompressible hydrodynamics to incompressible MHD.

Here, the MHD analogue of the divergence law (1.2) is derived in the limit Re → ∞
and for arbitrary positive values of the magnetic Prandtl number Prm = ν/η, where
ν is the kinematic viscosity and η is the magnetic diffusivity. The principal results
are equations (7.1)–(7.4). The derivation below uses the primitive variables v and b
rather than the Elsasser variables z± employed by Politano & Pouquet (1998a, b), a
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formulation that has certain advantages in applications that require tensor analysis
(Podesta, Forman & Smith 2007). Following Frisch (1995), the derivation presented
here is based on an equation for the scale-by-scale energy budget in Fourier space and
an expression that relates the energy flux ΠK in k-space to the third-order moments of
the fluctuations in physical space. This relationship between the third-order moments
in physical space and the energy flux in k-space reveals the physical meaning of the
fundamental law (1.2) in an especially simple way as discussed in § 7. Note that the
law (7.3) for the cascade of magnetic-helicity in anisotropic turbulence is new; the
derivation by Politano et al. (2003) is restricted to the case of isotropic turbulence.
The laws (7.1) and (7.2) for the cascade of energy and cross-helicity in anisotropic
turbulence were first derived by Politano & Pouquet (1998a).

In the present study, the derivation of the MHD laws for the third-order moments
is composed of four principal elements or building blocks that are derived in the
following four sections. The conservation of energy, cross-helicity and magnetic-
helicity are derived in § 2. The scale-by-scale versions of these conservation laws are
derived in § 3. The definitions of the third-order moments are derived in § 4. The
spectral transfer rates are expressed in terms of the third-order moments in § 5. These
four principal elements are then brought together in § 6 where the major results of
this paper are developed. Even though the three laws (7.1), (7.2) and (7.3) are derived
together, side by side, it should be emphasized that the derivation of each one is
independent of the other two.

2. Conservation of energy, cross-helicity and magnetic-helicity
The governing equations of incompressible MHD are written

∂v

∂t
+ (v · ∇)v − (b · ∇)b = −∇p + ν∇2v + f v, (2.1)

∂b
∂t

+ (v · ∇)b − (b · ∇)v = η∇2b + f b, (2.2)

∇ · v = ∇ · b = 0, (2.3)

where v is the velocity, b = B/
√

ρμ0 is the magnetic field in velocity units, ρ =
constant is the mass density, p is the total pressure (kinetic plus magnetic), ν is the
kinematic viscosity, η is the magnetic diffusivity, f v is the forcing function for the
velocity field, f b is the forcing function for the magnetic field, ∇ · f v = ∇ · f b = 0, and
μ0 is the permeability of free space (SI units). Note that the magnetic forcing term
f b in (2.2) is artificial because such a term never exists in real physical systems. It
is sometimes used in numerical simulations of MHD turbulence to inject magnetic
energy into the flow and is used here as a theoretical artifice.

For homogeneous incompressible MHD turbulence in three spatial dimensions the
governing equations for the average energy, cross-helicity, and magnetic-helicity are

1

2

∂

∂t
〈|v|2 + |b|2〉 = −ν〈|ω|2〉 − η〈| j |2〉 + 〈v · f v + b · f b〉, (2.4)

∂

∂t
〈v · b〉 = −(ν + η)〈 j · ω〉 + 〈v · f b + b · f v〉, (2.5)

∂

∂t
〈a · b〉 = −2η〈 j · b〉 + 〈a · f b + b · f a〉, (2.6)

respectively, where ω = ∇ × v is the vorticity, j = ∇ × b is proportional to the electric
current density, a is the vector potential for the magnetic field, b = ∇ × a, f b = ∇ × f a ,
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and |v|2 = v · v. Equation (2.6) applies only to turbulence in three-dimensional space.
In two dimensions, the quantity 〈a2〉 is conserved instead of 〈a · b〉 (Biskamp 2003).

2.1. Definition of cascade rates

Cascade rates can be defined for turbulence that is either statistically stationary in
time or freely decaying. Under steady-state conditions, the statistical averages are
independent of time and the conservation of energy (2.4) implies

〈v · f v + b · f b〉 = ν〈|ω|2〉 + η〈| j |2〉 ≡ ε. (2.7)

This equation says that in the steady state, the average energy injection rate (left-hand
side) is equal to the average energy dissipation rate (right-hand side). By definition,
for a turbulent MHD system, this is equal to the average energy cascade rate ε from
large to small scales.

Similarly, the conservation of cross-helicity (2.5) implies

〈v · f b + b · f v〉 = (ν + η)〈 j · ω〉 ≡ εC. (2.8)

This equation says that at steady state, the average injection rate of cross-helicity (left-
hand side) is equal to the average dissipation rate of cross-helicity (right-hand side).
This defines the average cascade rate of cross-helicity εC . Note that the cross-helicity,
unlike the energy, is not positive-definite. Both the cross-helicity and the cascade rate
of cross-helicity can be positive, negative or zero. However, by the previous equation,
the cascade rate has the same algebraic sign as the cross-helicity itself. The direction
of the cross-helicity cascade is always from large to small scales (Biskamp 2003)
independent of whether the value of the cross-helicity is positive or negative.

One of the goals of this paper is to derive laws for the flux of magnetic helicity
through the inertial range similar to the laws for the flux of energy and cross-helicity.
To do this, it is necessary to postulate the existence of an asymptotic steady state as has
been assumed in (2.7) and (2.8). At steady state, the conservation of magnetic-helicity
(2.6) implies

〈a · f b + b · f a〉 = 2η〈 j · b〉 ≡ εM. (2.9)

According to this equation, at steady state, the average injection rate of magnetic-
helicity (left-hand side) is equal to the average dissipation rate of magnetic-helicity
(right-hand side). This defines the average cascade rate of magnetic-helicity εM . While
it is well known that magnetic-helicity usually undergoes an inverse cascade to large
scales (Meneguzzi, Frisch & Pouquet 1981; Biskamp 2003), there may be situations
where the magnetic-helicity cascade process can reach a steady state, for example, in
the case of periodic boundary conditions.

Cascade rates can also be defined for freely decaying turbulence under certain
conditions. For homogeneous freely decaying turbulence, the forcing terms are zero
and the conservation of energy (2.4) takes the form

−1

2

∂

∂t
〈|v|2 + |b|2〉 = ν〈|ω|2〉 + η〈| j |2〉 ≡ ε(t). (2.10)

This defines the time-dependent energy decay rate ε(t). Similarly, the cross-helicity
decay rate in freely decaying turbulence is defined by

− ∂

∂t
〈v · b〉 = (ν + η)〈 j · ω〉 ≡ εC(t) (2.11)
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and the magnetic-helicity decay rate in freely decaying turbulence is defined by

− ∂

∂t
〈a · b〉 = 2η〈 j · b〉 ≡ εM (t). (2.12)

Note that the decay rates defined in (2.10)–(2.12) are not necessarily due to turbulent
cascade processes. For example, the Taylor relaxation process in laboratory plasma
experiments is characterized by a shortlived turbulent energy relaxation phase followed
by a slowly decaying force-free state in which the magnetic-helicity decays gradually
on a resistive time scale (Taylor 1986). The slow decay of the latter process is still
described by the quantity εM (t) defined in (2.12), even though the decay is not
associated with a turbulent cascade process. In this study, attention is restricted to
turbulent cascade processes. The decay rates ε(t), εC(t) and εM (t) shall hereafter
refer to turbulent cascade rates associated with nonlinear turbulent cascade processes
(whenever they exist). It is not required, however, that in a given application all three
cascade processes are simultaneously active. It is possible, for example, that there exists
a turbulent energy cascade without a cascade of cross-helicity or magnetic-helicity so
that εC = εM =0 while ε �= 0.

2.2. Energy conservation

The derivation of the energy conservation law (2.4) from the MHD equations is well
known, but the technique is briefly reviewed because it is used frequently in later
sections. Take the dot product of v with (2.1) plus the dot product of b with (2.2) to
obtain

1

2

∂

∂t
〈v · v + b · b〉 + NL = −〈v · ∇p〉 + ν〈v · ∇2v〉 + η〈b · ∇2b〉 + 〈v · f v + b · f b〉, (2.13)

where the nonlinear terms are given by

NL = 〈v · (v · ∇)v − v · (b · ∇)b + b · (v · ∇)b − b · (b · ∇)v〉 (2.14)

and angle brackets denote a spatial average over a cube of size L × L × L. For
homogeneous turbulence, the spatial and ensemble averages are equivalent. The limit
L → ∞ can be performed at the end of the calculation.

By incompressibility, the pressure term can be written

〈v · ∇p〉 = 〈∇ · (pv)〉 =
1

L3

∫
S

pv · n dS, (2.15)

where the surface integral on the right-hand side follows from the divergence theorem.
If periodic boundary conditions are assumed, then the surface integral is zero. More
generally, if all physical quantities p, v, etc. are uniformly bounded in space and time,
then the right-hand side vanishes in the limit L → ∞.

After integration by parts, the viscous term becomes

ν〈v · ∇2v〉 = −ν〈|∇vx |2 + |∇vy |2 + |∇vz|2〉 = −ν〈|ω|2〉, (2.16)

where the last equality on the right-hand side follows from the vector identity∫
A · (∇ × B) dV =

∫
(∇ × A) · B dV −

∫
(A × B) · n dS (2.17)

with A = v and B = ∇ × v. The contribution from the surface integral vanishes in the
case of periodic boundary conditions or, as a consequence of uniform boundedness,
after dividing by L3 (to obtain the volume average) and then letting L → ∞. Similar
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to the viscous term, the resistive term takes the form

η〈b · ∇2b〉 = −η〈|∇bx |2 + |∇by |2 + |∇bz|2〉 = −η〈| j |2〉. (2.18)

To complete the proof of (2.4) it only remains to show that the nonlinear term
(2.14) vanishes. The first term in (2.14) can be written

〈v · (v · ∇)v〉 = 1
2
〈(v · ∇)(v · v)〉 = 1

2
〈∇ · [(v · v)v]〉 =

1

2L3

∫
S

(v · v)v · n dS, (2.19)

where the second equality follows from incompressibility and the third from the
divergence theorem. Uniform boundedness of v implies that the right-hand side
vanishes as L → ∞. The term 〈b · (v · ∇)b〉 is evaluated in the same way. If the
remaining two terms in (2.14) are combined, then they can also be evaluated in the
same way. This completes the proof of (2.4).

2.3. Cross-helicity conservation

The derivation of (2.5) for the cross-helicity is similar to the derivation described in
the preceding subsection. Take the dot product of b with (2.1) plus the dot product
of v with (2.2) and then average. The remaining details are left to the reader. Note
that as a consequence of incompressibility, the cross-helicity dissipation term can be
written in the equivalent forms

〈b · ∇2v〉 = −〈∇vx · ∇bx + ∇vy · ∇by + ∇vz · ∇bz〉 = −〈 j · ω〉. (2.20)

2.4. Magnetic-helicity conservation

The equations for the magnetic field and the magnetic vector potential may be written

∂b
∂t

= ∇ × (v × b) + η∇2b + f b, (2.21)

∂a
∂t

= v × b + η∇2a + f a + ∇φ, (2.22)

where b = ∇ × a, f b = ∇ × f a , and φ is the scalar potential. It can be assumed,
without loss of generality, that ∇ · a = 0 since this can always be accomplished by an
appropriate choice of φ. Take the dot product of a with (2.21) plus the dot product
of b with (2.22) and then average to obtain

∂

∂t
〈a · b〉 = 〈a · [∇×(v×b)]〉+η〈a · ∇2b+b · ∇2a〉+〈a · f b +b · f a〉+〈b · ∇φ〉. (2.23)

Using the vector identity (2.17), it can be shown that the first term on the right-hand
side vanishes using the same kind of boundedness argument given for (2.15). The
dissipative terms may also be evaluated using the vector identity (2.17) with the result

η〈a · ∇2b + b · ∇2a〉 = −2η〈 j · b〉. (2.24)

Because ∇ · b = 0, the term containing the scalar potential φ can be converted to
a surface integral which vanishes by the same boundedness argument as given for
(2.15). This completes the derivation of (2.6).

3. Scale-by-scale energy, cross-helicity and magnetic-helicity budget
For any wavenumber K > 0, the velocity field v(x) can be decomposed into two

components, a low-wavenumber component containing all Fourier wavevectors of
magnitude less than or equal to K , and a high-wavenumber component containing all
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wavevectors greater than K . In this section, an equation is derived for the conservation
of energy for the low-wavenumber component. This equation contains terms for the
energy generation rate due to forcing and the average dissipation rate, like (2.4),
but it also contains a term describing the energy transfer from the low-wavenumber
component to the high-wavenumber component. The latter term is the key to the
entire theory developed in this paper, however, a useful mathematical form for this
term cannot be derived until § 5.

For a domain with periodic boundary conditions, the Fourier series representation
of v(x) is written

v(x) =
∑

k

v̂(k) exp(ik · x), (3.1)

where k = 2πn/L with n = (n1, n2, n3) an ordered triple of integers, and

v̂(k) =
1

L3

∫
cube

v(x) exp(−ik · x) d3x, (3.2)

where the integration is over a cube of volume L3. Any dependent variable, such as
v(x), can be decomposed into low- and high-wavenumber components in the form

v(x) = v<
K (x) + v>

K (x), (3.3)

where

v<
K (x) =

∑
|k|�K

v̂(k) exp(ik · x), (3.4)

v>
K (x) =

∑
|k|>K

v̂(k) exp(ik · x). (3.5)

3.1. Energy budget scale-by-scale

For homogeneous incompressible MHD turbulence, the conservation of energy for
the low-wavenumber components of the fields takes the form

∂EK

∂t
= SK − DK − ΠK, (3.6)

where

EK = 1
2
〈|v<

K |2 + |b<
K |2〉 (3.7)

is the average energy of the low-wavenumber components (kinetic plus magnetic),

SK = 〈v<
K · f <

vK + b<
K · f <

bK〉 (3.8)

is the average rate of energy injection at low wavenumbers due to forcing,

DK = ν〈|ω<
K |2〉 + η〈| j<

K |2〉 (3.9)

is the average energy dissipation rate at low wavenumbers due to viscous and resistive
dissipation, and ΠK is the rate of energy transfer from low wavenumbers to high
wavenumbers (from wavenumbers less than or equal to K to wavenumbers greater
than K). The energy transfer rate ΠK arises from the nonlinear terms in the equations
of motion. An expression for the energy transfer rate ΠK is given below.

Equation (3.6) is derived as follows. Let PK denote the projection operator that
projects out the low-wavenumber component of any function:

PKv(x) = PK [v<
K (x) + v>

K (x)] = v<
K (x). (3.10)
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Note that PKv<
K (x) = v<

K (x). Apply PK to (2.1) and (2.2) to obtain

∂v<
K

∂t
+ PK [(v · ∇)v − (b · ∇)b] = −∇p<

K + ν∇2v<
K + f <

vK, (3.11)

∂b<
K

∂t
+ PK [(v · ∇)b − (b · ∇)v] = η∇2b<

K + f <
bK, (3.12)

Take the dot product of v<
K (x) with (3.11) plus the dot product of b<

K (x) with (3.12)
and then average to obtain

1

2

∂

∂t
〈|v<

K |2 + |b<
K |2〉 + NL1 = −〈v<

K · ∇p<
K〉 + ν〈v<

K · ∇2v<
K〉

+ η〈b<
K · ∇2b<

K〉 + 〈v<
K · f <

vK + b<
K · f <

bK〉, (3.13)

where the nonlinear terms are given by

NL1 = 〈v<
K · PK [(v · ∇)v − (b · ∇)b] + b<

K · PK [(v · ∇)b − (b · ∇)v]〉 (3.14)

and angle brackets denote a spatial average over the cube of size L × L × L. Using
the incompressibility condition ∇ · v<

K = 0, it can be shown that the pressure term in
(3.13) vanishes as in (2.15). The viscous and resistive terms can be evaluated using
the vector identity (2.17).

The verification of (3.6)–(3.9) is completed by equating the energy transfer rate ΠK

with the nonlinear term (3.14). This is consistent with the well-known fact that the
nonlinear terms in the MHD equations cannot create or dissipate energy, but only
redistribute energy in Fourier space. Because an alternative expression for this term
is derived in §§ 4 and 5, the derivation in the remainder of this subsection can be
skipped without loss of continuity. To evaluate the nonlinear term (3.14), observe
that for any two functions f and g, 〈f (PKg)〉 = 〈(PKf )g〉, so that the nonlinear term
(3.14) is equal to

NL1 = 〈v<
K · [(v · ∇)v − (b · ∇)b] + b<

K · [(v · ∇)b − (b · ∇)v]〉. (3.15)

Expressing v and b in terms of high- and low-wavenumber components yields sixteen
terms, eight of which can be shown to vanish. Thus, (3.15) yields the expression

ΠK = 〈v<
K · [(v<

K · ∇)v>
K + (v>

K · ∇)v>
K ]〉 + 〈b<

K · [(v<
K · ∇)b>

K + (v>
K · ∇)b>

K ]〉

− 〈b<
K · [(b<

K · ∇)v>
K + (b>

K · ∇)v>
K ]〉 − 〈v<

K · [(b<
K · ∇)b>

K + (b>
K · ∇)b>

K ]〉. (3.16)

Eight of the original sixteen terms vanish as L → ∞ due to identities of the form

〈v<
K · (v>

K · ∇)v<
K〉 = 1

2
〈(v>

K · ∇)(v<
K · v<

K )〉 = 1
2
〈∇ · [(v<

K · v<
K )v>

K ]〉 → 0. (3.17)

3.2. Cross-helicity budget scale-by-scale

For homogeneous incompressible MHD turbulence, the conservation of cross-helicity
for the low wavenumber components of the fields takes the form

∂HC
K

∂t
= SC

K − DC
K − ΠC

K, (3.18)

where

HC
K = 〈v<

K · b<
K〉 (3.19)

is the average cross-helicity of the low-wavenumber component,

SC
K = 〈v<

K · f <
bK + b<

K · f <
vK〉 (3.20)
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is the rate of cross-helicity injection at low wavenumbers due to forcing,

DC
K = (ν + η)〈 j<

K · ω<
K〉 (3.21)

is the average cross-helicity dissipation rate at low wavenumbers due to viscous
and resistive dissipation, and ΠC

K is the rate of transfer of cross-helicity from low
wavenumbers to high wavenumbers. An expression for the cross-helicity transfer rate
ΠC

K is given below.
The derivation of (3.18)–(3.21) is similar to the derivation of (3.6)–(3.9). Apply the

projection operator PK to (2.1) and (2.2), then take the dot product of b<
K (x) with the

result of PK applied to (2.1) and take the dot product of v<
K (x) with the result of PK

applied to (2.2), add the two equations and then average to obtain

∂

∂t
〈v<

K · b<
K〉 + NL2 = −〈b<

K · ∇p<
K〉 + ν〈b<

K · ∇2v<
K〉

+ η〈v<
K · ∇2b<

K〉 + 〈b<
K · f <

vK + v<
K · f <

bK〉, (3.22)

where

NL2 = 〈b<
K · PK [(v · ∇)v − (b · ∇)b] + v<

K · PK [(v · ∇)b − (b · ∇)v]〉 (3.23)

and angle brackets denote a spatial average over a cube of size L × L × L. From the
divergence-free condition ∇ · b<

K = 0, the pressure term in (3.22) can be reduced to a
surface integral that vanishes as L → ∞ by the boundedness argument used in (2.15).
The viscous and resistive terms can be evaluated using the vector identity (2.17) with
the result

ν〈b<
K · ∇2v<

K〉 + η〈v<
K · ∇2b<

K〉 = −(ν + η)〈 j<
K · ω<

K〉. (3.24)

It only remains to evaluate the nonlinear term (3.23) which is equal to the cross-
helicity transfer rate ΠC

K . Because an alternative expression for this term is derived in
§§ 4 and 5, the derivation in the remainder of this subsection can be skipped without
loss of continuity. Moving the operator PK from the term in square brackets to the
term on the left-hand side of the dot product, the nonlinear term (3.23) can be written

NL2 = 〈b<
K · [(v · ∇)v − (b · ∇)b] + v<

K · [(v · ∇)b − (b · ∇)v]〉. (3.25)

Expressing v and b in terms of high- and low-wavenumber components yields sixteen
terms, eight of which can be shown to vanish. Thus, (3.25) becomes

ΠC
K = 〈b<

K · [(v<
K · ∇)v>

K + (v>
K · ∇)v>

K ]〉 − 〈b<
K · [(b<

K · ∇)b>
K + (b>

K · ∇)b>
K ]〉

+ 〈v<
K · [(v<

K · ∇)b>
K + (v>

K · ∇)b>
K ]〉 − 〈v<

K · [(b<
K · ∇)v>

K + (b>
K · ∇)v>

K ]〉. (3.26)

Eight of the original sixteen terms vanish as L → ∞ due to relations of the form

〈b<
K · (v<

K · ∇)v<
K + v<

K · (v<
K · ∇)b<

K〉 = 〈(v<
K · ∇)(v<

K · b<
K )〉 = 〈∇ · [(v<

K · b<
K )v<

K ]〉 → 0.

(3.27)

This completes the derivation of (3.18)–(3.21).

3.3. Magnetic-helicity budget scale-by-scale

For homogeneous incompressible MHD turbulence, the conservation of magnetic-
helicity for the low wavenumber components of the fields takes the form

∂HM
K

∂t
= SM

K − DM
K − ΠM

K , (3.28)
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where

HM
K = 〈a<

K · b<
K〉 (3.29)

is the average magnetic-helicity of the low-wavenumber component,

SM
K = 〈a<

K · f <
bK + b<

K · f <
aK〉 (3.30)

is the rate of magnetic-helicity injection at low wavenumbers due to forcing,

DM
K = 2η〈 j<

K · b<
K〉 (3.31)

is the average magnetic-helicity dissipation rate at low wavenumbers due to viscous
and resistive dissipation, and ΠM

K is the rate of transfer of magnetic-helicity from low
wavenumbers to high wavenumbers. An expression for the magnetic-helicity transfer
rate ΠM

K is given below.
Equations (3.28)–(3.31) are derived as follows. Apply the projection operator PK

to (2.21) and (2.22), take the dot product of a<
K (x) with the result of PK applied to

(2.21) and take the dot product of b<
K (x) with the result of PK applied to (2.22), then

add the two equations and average to obtain

∂

∂t
〈a<

K · b<
K〉 = NL3 + η〈a<

K · ∇2b<
K + b<

K · ∇2a<
K〉 + 〈a<

K · f <
bK + b<

K · f <
aK〉, (3.32)

where

NL3 = 〈a<
K · PK [∇ × (v × b)] + b<

K · PK (v × b)〉 (3.33)

and angle brackets denote a spatial average over a cube of size L × L × L. The term
on the left-hand side of (3.32) is equal to ∂HM

K /∂t . The third term on the right-hand
side of (3.32) is SM

K . The second term on the right-hand side of (3.32) can be evaluated
using the vector identity (2.17) together with the fact that ∇ · a<

K = 0. Hence,

η〈a<
K · ∇2b<

K + b<
K · ∇2a<

K〉 = −2η〈 j<
K · b<

K〉 (3.34)

and this is equal to −DM
K .

The nonlinear term (3.33) is equal to the magnetic-helicity transfer rate ΠM
K . Because

an alternative expression for this term is derived in §§ 4 and 5, the derivation in the
remainder of this subsection can be skipped without loss of continuity. Moving the
operator PK from the second term in the dot product to the first term in the dot
product, the nonlinear term (3.33) takes the form

NL3 = 〈a<
K · [∇ × (v × b)] + b<

K · (v × b)〉. (3.35)

The first term can be simplified using the vector identity (2.17) with the result

NL3 = 2〈b<
K · (v × b)〉, (3.36)

where the surface term has been dropped since it vanishes in the limit as L → ∞.
Expressing v and b in terms of low- and high-wavenumber components, it follows
that

ΠM
K = −NL3 = −2〈b<

K · (v<
K × b>

K + v>
K × b>

K )〉. (3.37)

This completes the derivation of (3.28)–(3.31).

4. Third-order moments F, FC and FM

The vectors F, FC and FM which enter the divergence laws derived in § 6 are third-
order moments of the fields v and b. These third-order moments originate in the
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dynamic equations for second-order correlation functions. In this section, equations
for the second-order correlation functions are derived; the vectors F, FC and FM

which emerge from these equations are defined; and the divergence of these vectors
are related to the time rate of change of the second-order correlation functions due
to nonlinear interactions. The latter relationships are required in § 5.

4.1. Third-order moment F for the energy

To derive an equation for the two-point correlation function, write down equations
for v and b at the two points x and x ′ = x + r:

∂v

∂t
+ (v · ∇)v − (b · ∇)b = −∇p + ν∇2v + f v, (4.1)

∂b
∂t

+ (v · ∇)b − (b · ∇)v = η∇2b + f b; (4.2)

∂v′

∂t
+ (v′ · ∇)v′ − (b′ · ∇)b′ = −∇p′ + ν∇2v′ + f ′

v, (4.3)

∂b′

∂t
+ (v′ · ∇)b′ − (b′ · ∇)v′ = η∇2b′ + f ′

b, (4.4)

where v = v(x, t), v′ = v(x + r, t), etc., and all spatial derivatives are with respect to
the variable x. Take the dot product of v′ with (4.1), plus the dot product of v with
(4.3), plus the dot product of b′ with (4.2), plus the dot product of b with (4.4), and
then average to obtain

∂

∂t
〈v′ · v + b′ · b〉 + NL = −〈v′ · ∇p + v · ∇p′〉 + ν〈v′ · ∇2v + v · ∇2v′〉

+ η〈b′ · ∇2b + b · ∇2b′〉 + 〈v′ · f v + v · f ′
v + b′ · f b + b · f ′

b〉, (4.5)

where

NL = 〈v′ · [(v · ∇)v − (b · ∇)b] + v · [(v′ · ∇)v′ − (b′ · ∇)b′]

+ b′ · [(v · ∇)b − (b · ∇)v] + b · [(v′ · ∇)b′ − (b′ · ∇)v′]〉 (4.6)

and the angle brackets denote a spatial average with respect to the variable x over a
cube of dimensions L × L × L. Although (4.5) is of interest in its own right, only the
nonlinear terms are of interest here. The reason for focusing on the nonlinear terms
will become clear in §§ 5 and 6.

Using the incompressibility condition ∇ · v = 0, integration by parts, and the fact
that the surface integrals vanish in the limit L → ∞ as shown in § 2, one finds

〈v′ · (v · ∇)v〉 = 〈v′
i∂j (vivj )〉 = −〈(∂jv

′
i)(vivj )〉 = − ∂

∂rj

〈v′
ivivj 〉, (4.7)

where ∂j = ∂/∂xj , repeated indices are summed from 1 to 3, and the volume average
is performed with respect to the variable x. The simple fact

∂f (x + r)
∂xj

=
∂f (x + r)

∂rj

(4.8)

has also been used. By a similar procedure, one obtains

〈v · (v′ · ∇)v′〉 = 〈vi∂j (v
′
iv

′
j )〉 =

∂

∂rj

〈viv
′
iv

′
j 〉. (4.9)
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It is now shown that

∇r · 〈|δv(r)|2δv(r)〉 = 2
∂

∂rj

〈viv
′
ivj − v′

iviv
′
j 〉, (4.10)

where δv(r) = v(x + r) − v(x), and, therefore,

〈v′ · (v · ∇)v + v · (v′ · ∇)v′〉 = − 1
2
∇r · 〈|δv(r)|2δv(r)〉. (4.11)

By homogeneity, 〈vivivj 〉 = 〈v′
iv

′
iv

′
j 〉 and, therefore,

〈|δv(r)|2δv(r)〉 = 〈(v′
i − vi)(v

′
i − vi)(v

′
j − vj )〉 (4.12)

= 〈viviv
′
j 〉 − 〈v′

iv
′
ivj 〉 − 2〈v′

iviv
′
j 〉 + 2〈viv

′
ivj 〉. (4.13)

Incompressibility implies that

∂

∂rj

〈viviv
′
j 〉 = 〈vivi∂jv

′
j 〉 = 0, (4.14)

∂

∂rj

〈v′
iv

′
ivj 〉 = 〈vj∂j (v

′
iv

′
i)〉 = 〈∂j (v

′
iv

′
ivj )〉 = 0. (4.15)

This proves (4.10) and (4.11).
Using the condition ∇ · b = 0 and integrating by parts, the remaining nonlinear

terms in (4.6) are

−〈v′ · (b · ∇)b〉 = −〈v′
i∂j (bibj )〉 = 〈(∂jv

′
i)(bibj )〉 =

∂

∂rj

〈v′
ibibj 〉, (4.16)

−〈v · (b′ · ∇)b′〉 = −〈vi∂j (b
′
ib

′
j )〉 = − ∂

∂rj

〈vib
′
ib

′
j 〉, (4.17)

〈b′ · (v · ∇)b〉 = 〈b′
i∂j (bivj )〉 = −〈(∂jb

′
i)(bivj )〉 = − ∂

∂rj

〈bib
′
ivj 〉, (4.18)

−〈b′ · (b · ∇)v〉 = −〈b′
i∂j (vibj )〉 = 〈(∂jb

′
i)(vibj )〉 =

∂

∂rj

〈vib
′
ibj 〉, (4.19)

〈b · (v′ · ∇)b′〉 = 〈bi∂j (b
′
iv

′
j )〉 =

∂

∂rj

〈bib
′
iv

′
j 〉, (4.20)

−〈b · (b′ · ∇)v′〉 = −〈bi∂j (v
′
ib

′
j )〉 = − ∂

∂rj

〈bib
′
j v

′
i〉. (4.21)

By the same procedure as employed to derive (4.10), it can be shown that

∇r · 〈|δb|2δv〉 = 2
∂

∂rj

〈bib
′
ivj − b′

ibiv
′
j 〉, (4.22)

where δb(r) = b(x + r) − b(x) and

∇r · 〈(δv · δb)δb〉 = − ∂

∂rj

〈v′
ibib

′
j − v′

ibibj + vib
′
ib

′
j − vib

′
ibj 〉. (4.23)

Thus, the sum of the terms (4.16)–(4.21) is equal to

∇r ·
〈
(δv · δb)δb − 1

2
|δb|2δv

〉
. (4.24)

Adding this to (4.11), we find that the nonlinear term (4.6) can be written

NL = ∇r ·
〈
[δv(r) · δb(r)]δb(r) − 1

2
[|δv(r)|2 + |δb(r)|2]δv(r)

〉
. (4.25)
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Now define the quantity

ε(r) = −1

2

∂

∂t
〈v(x + r) · v(x) + b(x + r) · b(x)〉|NL, (4.26)

where the subscript NL indicates the time rate of change due to the nonlinear terms
in the MHD equations. The function ε(r) is not constant and should not be confused
with the cascade rate ε, although the two are related as shown in §§ 5 and 6. From
(4.5) and (4.25) it follows that

ε(r) = − 1
4
∇ · F(r) (4.27)

where

F(r) = 〈[|δv(r)|2 + |δb(r)|2]δv(r) − 2[δv(r) · δb(r)]δb(r)〉 (4.28)

and δv(r) = v(x + r) − v(x). The last three equations are the principal results of this
subsection. The vector F is a statistical third-order moment constructed from the
fluctuations δv and δb. It is called the vector third-order moment for the energy.

4.2. Third-order moment FC for the cross-helicity

To derive an equation for the two-point correlation function take the dot product of
b′ with (4.1), plus the dot product of b with (4.3), plus the dot product of v′ with
(4.2), plus the dot product of v with (4.4), and then average to obtain

∂

∂t
〈v′ · b + b′ · v〉 + NL = −〈b′ · ∇p + b · ∇p′〉 + ν〈b′ · ∇2v + b · ∇2v′〉

+ η〈v′ · ∇2b + v · ∇2b′〉 + 〈b′ · f v + b · f ′
v + v′ · f b + v · f ′

b〉, (4.29)

where

NL = 〈v′ · [(v · ∇)b − (b · ∇)v] + v · [(v′ · ∇)b′ − (b′ · ∇)v′]

+ b′ · [(v · ∇)v − (b · ∇)b] + b · [(v′ · ∇)v′ − (b′ · ∇)b′]〉 (4.30)

and the average is with respect to the variable x over a cube of dimensions L × L × L.
The nonlinear terms in (4.30) are evaluated in the same manner as described in

§ 4.1 with the results

〈v′ · (v · ∇)b〉 = 〈v′
i∂j (bivj )〉 = −〈(∂jv

′
i)(bivj )〉 = − ∂

∂rj

〈v′
ibivj 〉, (4.31)

−〈v′ · (b · ∇)v〉 = −〈v′
i∂j (vibj )〉 = 〈(∂jv

′
i)(vibj )〉 =

∂

∂rj

〈v′
ivibj 〉, (4.32)

〈v · (v′ · ∇)b′〉 = 〈vi∂j (b
′
iv

′
j )〉 =

∂

∂rj

〈vib
′
iv

′
j 〉, (4.33)

−〈v · (b′ · ∇)v′〉 = −〈vi∂j (v
′
ib

′
j )〉 = − ∂

∂rj

〈viv
′
ib

′
j 〉, (4.34)

〈b′ · (v · ∇)v〉 = 〈b′
i∂j (vivj )〉 = −〈(∂jb

′
i)(vivj )〉 = − ∂

∂rj

〈vib
′
ivj 〉, (4.35)

−〈b′ · (b · ∇)b〉 = −〈b′
i∂j (bibj )〉 = 〈(∂jb

′
i)(bibj )〉 =

∂

∂rj

〈b′
ibibj 〉, (4.36)

〈b · (v′ · ∇)v′〉 = 〈bi∂j (v
′
iv

′
j )〉 =

∂

∂rj

〈v′
ibiv

′
j 〉, (4.37)
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−〈b · (b′ · ∇)b′〉 = −〈bi∂j (b
′
ib

′
j )〉 = − ∂

∂rj

〈b′
ibib

′
j 〉. (4.38)

The procedure used to derive (4.10), (4.22) and (4.23) can be applied to show that
the sum of the terms (4.31)–(4.38) is equal to

NL = 1
2
∇r · 〈[ |δv(r)|2 + |δb(r)|2]δb(r) − 2[δv(r) · δb(r)]δv(r)〉. (4.39)

With these results in hand, now define the quantity

εC(r) = −1

2

∂

∂t
〈v(x + r) · b(x) + b(x + r) · v(x)〉|NL, (4.40)

where the subscript NL indicates the time rate of change due to the nonlinear terms in
the MHD equations. The function εC(r) is not constant and should not be confused
with the cascade rate of cross-helicity εC , although the two quantities are closely
related as shown in §§ 5 and 6. From (4.29) and (4.39), it follows that

εC(r) = − 1
4
∇ · FC(r), (4.41)

where

FC(r) = −〈[ |δv(r)|2 + |δb(r)|2]δb(r) − 2[δv(r) · δb(r)]δv(r)〉. (4.42)

Note the similarity between (4.40)–(4.42) and (4.26)–(4.28). The quantity FC is the
vector third-order moment for the cross-helicity.

4.3. Third-order moment FM for the magnetic-helicity

Write down the equations for the magnetic field and vector potential at two points x
and x ′ = x + r:

∂b
∂t

= ∇ × (v × b) + η∇2b + f b, (4.43)

∂a
∂t

= v × b + η∇2a + f a; (4.44)

∂b′

∂t
= ∇ × (v′ × b′) + η∇2b′ + f ′

b, (4.45)

∂a′

∂t
= v′ × b′ + η∇2a′ + f ′

a, (4.46)

where b = b(x, t), b′ = b(x + r, t), etc., and all the spatial derivatives are with respect
to the variable x. Take the dot product of a′ with (4.43), plus the dot product of
b′ with (4.44), plus the dot product of a with (4.45), plus the dot product of b with
(4.46), and then average to obtain

∂

∂t
〈a · b′ + a′ · b〉 = NL + η〈a · ∇2b′ + b′ · ∇2a + a′ · ∇2b + b · ∇2a′〉

+ 〈a · f ′
b + b′ · f a + a′ · f b + b · f ′

a〉, (4.47)

where

NL = 〈a · [∇ × (v′ × b′)] + b · (v′ × b′) + a′ · [∇ × (v × b)] + b′ · (v × b)〉. (4.48)

By repeated use of the vector identity (2.17), equation (4.47) can be transformed into

∂

∂t
〈a · b′ + a′ · b〉 = NL − 2η〈 j · b′ + j ′ · b〉 + 2〈a · f ′

b + a′ · f b〉 (4.49)
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and (4.48) can be transformed into

NL = 2〈b · (v′ × b′) + b′ · (v × b)〉 (4.50)

or, equivalently,

NL = −2∇r · 〈a × (v′ × b′) − a′ × (v × b)〉. (4.51)

Because the divergence operator (∇r · ) acts only on the primed variables, the
equivalence of these two expressions follows from an application of the vector
identity ∇ · (A × B) = B · (∇ × A) − A · (∇ × B) to (4.51) followed by an application
of the identity (2.17).

Equations (4.49) and (4.51) yield the following expression for the time rate of
change due to the nonlinear terms

εM (r) ≡ −1

2

∂

∂t
〈a(x + r) · b(x) + b(x + r) · a(x)〉|NL = −∇ · FM, (4.52)

where

FM (r) = 〈a(x + r) × [v(x) × b(x)] − a(x) × [v(x + r) × b(x + r)]〉 (4.53)

is the vector third-order moment for the magnetic-helicity. It does not appear possible
to express the vector FM solely in terms of the fluctuations as in (4.25) or (4.39).
However, it is possible to manipulate (4.50) to obtain

NL = 2〈b′ · (v × b − v′ × b)〉 = −2〈b′ · (δv × b)〉 = −2〈δb · (δv × b)〉 = 2〈b · (δv × δb)〉.
(4.54)

Thus, (4.52) is equivalent to

εM (r) = −〈b(x) · [δv(r) × δb(r)]〉. (4.55)

The magnetic-helicity vector FM has a distinctly different character from the energy
vector F or the cross-helicity vector FC . The difference is revealed by the special
relation (4.55).

5. Spectral transfer rates of energy, cross-helicity and magnetic-helicity
The fourth pillar upon which the results of this paper are founded may be stated

as follows.
In homogeneous but not necessarily isotropic turbulence, the energy transfer rate

ΠK from small to large wavenumbers is related to the vector third-order moment F
by

ΠK = − 1

8π2

∫
∇ ·

[ r
r2

∇ · F
] sin(Kr)

r
d3r, (5.1)

the cross-helicity transfer rate ΠC
K from small to large wavenumbers is related to the

vector third-order moment FC by

ΠC
K = − 1

8π2

∫
∇ ·

[ r
r2

∇ · FC
] sin(Kr)

r
d3r, (5.2)

and the magnetic-helicity transfer rate ΠM
K from small to large wavenumbers is is

related to the vector third-order moment FM by

ΠM
K = − 1

2π2

∫
∇ ·

[ r
r2

∇ · FM
] sin(Kr)

r
d3r (5.3)
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or, equivalently,

ΠM
K = − 1

2π2

∫
∇ ·

[ r
r2

〈b · (δv × δb)〉
] sin(Kr)

r
d3r. (5.4)

These expressions are derived in the following subsections.

5.1. Expression for the energy transfer rate

By definition,

ε(r) = −1

2

∂

∂t
〈v(x + r) · v(x) + b(x + r) · b(x)〉

∣∣
NL

, (5.5)

where the subscript NL indicates the time rate of change due to the nonlinear terms
in the MHD equations. Substitute the decomposition (3.3) into this equation and use
the fact that for any two functions f (x) and g(x), 〈f <

K (x)g>
K (x)〉 = 0. Thus

ε(r) = −1

2

∂

∂t
〈v<

K (x + r) · v<
K (x) + v>

K (x + r) · v>
K (x)

+ b<
K (x + r) · b<

K (x) + b>
K (x + r) · b>

K (x)〉
∣∣
NL

. (5.6)

If it can be shown that

ε<
K (r) = −1

2

∂

∂t
〈v<

K (x + r) · v<
K (x) + b<

K (x + r) · b<
K (x)〉

∣∣
NL

, (5.7)

ε>
K (r) = −1

2

∂

∂t
〈v>

K (x + r) · v>
K (x) + b>

K (x + r) · b>
K (x)〉

∣∣
NL

, (5.8)

then, by the definition of ΠK ,

ΠK = −1

2

∂

∂t
〈|v<

K (x)|2 + |b<
K (x)|2〉

∣∣
NL

= ε<
K (r = 0), (5.9)

where the last equality on the right-hand side follows from (5.7). Using the Fourier
representation

ε<
K (r) =

∑
|k|�K

ε̂(k) exp(ik · r), (5.10)

where

ε̂(k) =
1

L3

∫
cube

ε(r) exp(−ik · r) d3r, (5.11)

one obtains from (5.9) the expression

ΠK =
1

L3

∑
|k|�K

∫
ε(r) exp(−ik · r) d3r. (5.12)

In the limit as L → ∞, this becomes

ΠK =
1

(2π)3

∫
|k|�K

d3k
∫

ε(r) exp(−ik · r) d3r, (5.13)

where the r-integration is now over all space. Interchanging the order of integration
in (5.13), the integration over k is performed by choosing a coordinate system in
which the kz-axis is aligned with r . This yields

ΠK =
1

2π2

∫
sin(Kr) − Kr cos(Kr)

r3
ε(r) d3r. (5.14)
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An integration by parts then yields the final form

ΠK =
1

2π2

∫
∇ ·

[
rε(r)
r2

]
sin(Kr)

r
d3r. (5.15)

Insert (4.27) to obtain (5.1).
To complete the derivation it is necessary only to verify (5.7) and (5.8). Substitute

the Fourier series for v(x) and b(x) into (5.5) to obtain

ε(r) = −1

2

∑
k

∂

∂t
〈|v̂(k, t)|2 + |b̂(k, t)|2〉NL exp(ik · r) (5.16)

and substitute the Fourier series for v<
K (x) and b<

K (x) to obtain

−1

2

∂

∂t
〈v<

K (x + r) · v<
K (x) + b<

K (x + r) · b<
K (x)〉

∣∣
NL

= −1

2

∑
|k|�K

∂

∂t
〈|v̂(k, t)|2 + |b̂(k, t)|2〉NL exp(ik · r). (5.17)

From the definition of ε<
K (r), a comparison of (5.16) and (5.17) shows that (5.17) is

equal to ε<
K (r). This proves (5.7). The proof of (5.8) is similar.

5.2. Expression for the cross-helicity transfer rate

By definition,

εC(r) = −1

2

∂

∂t
〈v(x + r) · b(x) + b(x + r) · v(x)〉

∣∣
NL

, (5.18)

where the subscript NL indicates the contribution to the time rate of change arising
from the nonlinear terms in the MHD equations. Use the decomposition (3.3)
to find

εC(r) = −1

2

∂

∂t
〈v<

K (x + r) · b<
K (x) + b<

K (x + r) · v<
K (x)

+ v>
K (x + r) · b>

K (x) + b>
K (x + r) · v>

K (x)〉
∣∣
NL

. (5.19)

As in the previous subsection, it can be shown that

εC<
K (r) = −1

2

∂

∂t
〈v<

K (x + r) · b<
K (x) + b<

K (x + r) · v<
K (x)〉

∣∣
NL

, (5.20)

εC>
K (r) = −1

2

∂

∂t
〈v>

K (x + r) · b>
K (x) + b>

K (x + r) · v>
K (x)〉

∣∣
NL

. (5.21)

Therefore, by the definition of ΠC
K ,

ΠC
K = − ∂

∂t
〈v<

K (x) · b<
K (x)〉

∣∣
NL

= εC<
K (r = 0), (5.22)

where the last equality on the right-hand side follows from (5.20). The Fourier
representation

εC<
K (r) =

∑
|k|�K

ε̂C(k) exp(ik · r), (5.23)

where

ε̂C(k) =
1

L3

∫
cube

εC(r) exp(−ik · r) d3r, (5.24)
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yields, from (5.22), the expression

ΠC
K =

1

L3

∑
|k|�K

∫
cube

εC(r) exp(−ik · r) d3r. (5.25)

In the limit L → ∞, this becomes

ΠC
K =

1

(2π)3

∫
|k|�K

d3k
∫

εC(r) exp(−ik · r) d3r, (5.26)

where the r-integration is now over all space. Interchanging the order of integration
in (5.26), the integration over k is then performed by choosing a coordinate system
with the kz-axis aligned with r . This yields

ΠC
K =

1

2π2

∫
sin(Kr) − Kr cos(Kr)

r3
εC(r) d3r. (5.27)

An integration by parts then yields the desired expression

ΠC
K =

1

2π2

∫
∇ ·

[
rεC(r)

r2

]
sin(Kr)

r
d3r. (5.28)

Insert the result (4.41) to obtain (5.2).

5.3. Expression for the magnetic-helicity transfer rate

The derivation is nearly identical to that for the transfer rate of cross-helicity in § 5.2,
but is presented in full for completeness. By definition,

εM (r) = −1

2

∂

∂t
〈a(x + r) · b(x) + b(x + r) · a(x)〉

∣∣
NL

, (5.29)

where the subscript NL indicates the contribution to the time rate of change arising
from the nonlinear terms in the MHD equations. Applying the decomposition (3.3),
this takes the form

εM (r) = −1

2

∂

∂t
〈a<

K (x + r) · b<
K (x) + b<

K (x + r) · a<
K (x)

+ a>
K (x + r) · b>

K (x) + b>
K (x + r) · a>

K (x)〉
∣∣
NL

. (5.30)

As demonstrated in § 5.1, it can be shown that

εM<
K (r) = −1

2

∂

∂t
〈a<

K (x + r) · b<
K (x) + b<

K (x + r) · a<
K (x)〉

∣∣
NL

, (5.31)

εM>
K (r) = −1

2

∂

∂t
〈a>

K (x + r) · b>
K (x) + b>

K (x + r) · a>
K (x)〉

∣∣
NL

. (5.32)

Therefore, from the definition of ΠM
K ,

ΠM
K = − ∂

∂t
〈a<

K (x) · b<
K (x)〉

∣∣
NL

= εM<
K (r = 0), (5.33)

where the last equality on the right-hand side follows from (5.31). The Fourier
representation

εM<
K (r) =

∑
|k|�K

ε̂M (k) exp(ik · r), (5.34)

where

ε̂M (k) =
1

L3

∫
cube

εM (r) exp(−ik · r) d3r, (5.35)
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yields, from (5.33), the expression

ΠM
K =

1

L3

∑
|k|�K

∫
cube

εM (r) exp(−ik · r) d3r. (5.36)

In the limit as L → ∞, this becomes

ΠM
K =

1

(2π)3

∫
|k|�K

d3k
∫

εM (r) exp(−ik · r) d3r, (5.37)

where the r-integration is now over all space. Interchanging the order of integration
in (5.37), the integration over k is then performed by choosing a coordinate system
with the kz-axis aligned with r . This yields

ΠM
K =

1

2π2

∫
sin(Kr) − Kr cos(Kr)

r3
εM (r) d3r. (5.38)

An integration by parts then yields the desired expression

ΠM
K =

1

2π2

∫
∇ ·

[
rεM (r)

r2

]
sin(Kr)

r
d3r. (5.39)

Now insert the result (4.52) to obtain (5.3) and insert the result (4.55) to obtain (5.4).

6. Divergence laws for MHD turbulence
The fundamental laws for the third-order moments are now derived in the limit

of large Reynolds numbers. These laws are valid for both stationary (steady state)
turbulence and freely decaying turbulence.

6.1. Law for the inertial range energy flux

Under steady-state conditions, the average energy input due to forcing is balanced by
the average energy dissipation due to viscous friction and resistive losses as described
by (2.7). If the wavenumber spectra of the forcing functions f v and f b are confined to
large scales near 
0  K−1

0 , and the kinetic and magnetic Reynolds numbers are very
large, then both the viscous and resistive dissipation scales are very small compared
to 
0 and there exists an intermediate range of scales called the inertial range where
the energy transfer rate from large to small scales is approximately constant. That is,

ΠK  ε = constant (6.1)

for all K in the inertial range. This argument can be made more precise. Hereafter,
the value of the magnetic Prandtl number Prm = ν/η is assumed fixed (constant)
since the theory does not depend on the precise numerical value of Prm.

In homogeneous but not necessarily isotropic turbulence, the vector third-order
moment F(r) satisfies the divergence law

∇ · F = −4ε (6.2)

in the limit as Re → ∞ and for r in the inertial range.
Assume that the wavenumber spectra of the forcing functions are zero beyond

some cutoff wavenumber Kc or, otherwise, are negligible for K � K0. Assume that for
every value of the kinetic Reynolds number Re ∼ ν−1, the MHD system approaches
a statistically stationary state at large times characterized by finite values of the
average energy, cross-helicity and magnetic-helicity. Also assume that as Re → ∞ with
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Prm = constant, the average dissipation rates of energy, cross-helicity and magnetic-
helicity all converge to constant values ε, εC and εM .

At steady state, the energy cascade rate ε(ν) may depend on the inverse Reynolds
number ν and is defined by

〈v · f v + b · f b〉 = ν〈|ω|2 + Pr−1| j |2〉 = ε(ν), (6.3)

where ε(ν) → ε as ν → 0. The scale-by-scale energy budget (3.6) takes the form

ΠK = SK − DK. (6.4)

Equation (3.8) can be written in the equivalent form

SK = 〈v<
K · f <

vK + b<
K · f <

bK〉 = 〈v · f <
vK + b · f <

bK〉, (6.5)

because 〈v>
K · f <

vK〉 =0 and 〈b>
K · f <

vK〉 =0. The assumption that the forcing functions
are confined to small wavenumbers implies

f <
vK (x, t)  f v(x, t), f <

bK (x, t)  f b(x, t) for K � K0. (6.6)

Hence,

SK  〈v · f v + b · f b〉 = ε(ν) for all K � K0. (6.7)

It will be shown that for a fixed value of K ,

lim
ν→0

DK = 0 (6.8)

and, consequently, from (6.4), (6.7) and (6.3),

lim
ν→0

ΠK = ε for all K � K0. (6.9)

This equation says that in the limit as Re → ∞, the energy transfer rate from
wavenumbers less than K to wavenumbers greater than K is constant, independent
of K , for all K in the inertial range K � K0 and, moreover, the value of the energy
transfer rate is equal to the cascade rate ε. Thus, the intuitive result (6.1) has been
given a precise mathematical formulation. To demonstrate (6.8) note that for any
function φ(x, t)

〈 |φ(x)|2〉 =
∑

k

|φ̂(k)|2, (6.10)

〈 |∇φ<
K (x)|2〉 =

∑
|k|�K

k2|φ̂(k)|2 � K2〈 |φ(x)|2〉. (6.11)

Therefore, from (2.16) and (2.18),

DK = ν〈 |ω<
K (x)|2〉 + η〈 | j<

K (x)|2〉 � νK2〈 |v(x)|2 + Pr−1|b(x)|2〉. (6.12)

Equation (6.8) follows from the assumption that the average energy remains bounded
as ν → 0.

Substitute the result ΠK = ε into (5.1) to obtain

ΠK =
1

2π2

∫
f (r)

sin(Kr)

r3
d3r = ε for all K � K0, (6.13)

where

f (r) = − r2

4
∇ ·

[ r
r2

∇ · F(r)
]
. (6.14)
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With the change of variable r ′ = K r , equation (6.13) takes the form

ΠK =
1

2π2

∫
f

(
r
K

)
sin(r)

r3
d3r = ε, for all K � K0. (6.15)

For large K , this integral depends on the behaviour of f (r) near r = 0. Approximating
f (r) by the first term in its Taylor series, the integration yields

f (r) = ε, K0r � 1. (6.16)

The substitution of (6.16) into (6.14) yields the differential equation

r2∇ ·
[

r
r2

∇ · F(r)

]
= −4ε (6.17)

or

r2∇ ·
[
ε(r)

r
r2

]
= ε, (6.18)

where ε(r) is defined by (4.27). The solution of this equation that remains bounded
near r = 0 is

ε(r) = ε. (6.19)

This is (6.2).
So far, it has been assumed that the turbulence is stationary in time. It will now

be shown that the divergence law (6.2) also holds in the case of freely decaying
turbulence. In this case, however, the divergence law applies only to the nonlinear
phase of the decay when there exists a large separation of length scales and a large
inertial range. In the late stages of the decay, the dissipation acts on all dynamically
relevant scales so the approximation DK = 0 fails to hold. For freely decaying
turbulence, the cascade rate is defined by the energy equation

−1

2

∂

∂t
〈|v|2 + |b|2〉 = ν〈|ω|2〉 + η〈| j |2〉 = ε(t). (6.20)

The scale-by-scale energy budget (3.6) takes the form

−∂EK

∂t
= ΠK + DK. (6.21)

In the nonlinear phase of the decay, the approximation DK = 0 is valid as long as
the inertial range is well separated from the dissipation scales or, in other words, as
long as the dissipation scales are greater than K . In addition,

v<
K (x, t)  v(x, t), b<

K (x, t)  b(x, t) for K � K0 (6.22)

so that
∂EK

∂t
=

1

2

∂

∂t
〈|v<

K |2 + |b<
K |2〉  1

2

∂

∂t
〈|v|2 + |b|2〉 = −ε(t). (6.23)

Thus, ΠK = ε(t) and the rest of the derivation, from (6.13) onward, remains the same.

6.2. Law for the inertial range cross-helicity flux

In homogeneous but not necessarily isotropic turbulence, the vector third-order
moment for the cross-helicity FC(r) satisfies the divergence law,

∇ · FC = −4εC, (6.24)

in the limit Re → ∞ and for r in the inertial range.
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The derivation of this result is almost identical to that for the energy in § 6.1. To
summarize, it can be shown that ΠC

K = εC for all K � K0, and this result can be
substituted into (5.2) to obtain (6.24). The details are left to the reader. The only
notable difference between the derivation of (6.2) and (6.24) is in the demonstration

lim
ν→0

DC
K = 0. (6.25)

To prove this, note that for any two functions f (x) and g(x), the Schwarz inequality
implies

|〈∇f <
K · ∇g<

K〉| � 〈 |∇f <
K |2〉1/2〈 |∇g<

K |2〉1/2 � K2〈 |f |2〉1/2〈 |g|2〉1/2, (6.26)

where the inequality on the right-hand side follows from (6.11). From (3.24)

〈 j<
K · ω<

K〉 = 〈∇v<
xK · ∇b<

xK + ∇v<
yK · ∇b<

yK + ∇v<
zK · ∇b<

zK〉, (6.27)

where v = (vx, vy, vz) and, therefore,∣∣DC
K

∣∣ = |(ν + η)〈 j<
K · ω<

K〉| � 3ν
(
1 + Pr−1

)
〈 |v|2〉1/2〈 |b|2〉1/2, (6.28)

If the total energy is bounded as ν → 0, then 〈 |v|2〉 and 〈 |b|2〉 are both bounded and
the result (6.25) follows.

6.3. Law for the inertial range magnetic-helicity flux

In homogeneous but not necessarily isotropic turbulence, the vector third-order
moment for the magnetic helicity FM (r) satisfies the divergence law

∇ · FM = −εM (6.29)

in the limit Re → ∞ and for r in the inertial range. In addition, the third-order
moment satisfies

〈b · (δv × δb)〉 = −εM. (6.30)

The derivation of these results follows closely the derivations for the energy and
cross-helicity in §§ 6.1 and 6.2. Briefly, it can be shown that ΠM

K = εM for all K � K0

and this result can be substituted into (5.3) and (5.4) to obtain (6.29) and (6.30),
respectively. The details are omitted for brevity.

7. Conclusions
It has been shown that in the limit of large kinetic and magnetic Reynolds numbers,

the vector third-order moments F(r), FC(r), and FM (r) for homogeneous, anisotropic,
incompressible MHD turbulence satisfy the divergence laws

∇ · F = −4ε, (7.1)

∇ · FC = −4εC, (7.2)

∇ · FM = −εM, (7.3)

and, in addition,

〈b(x) · [δv(r) × δb(r)]〉 = −εM, (7.4)

where F, FC and FM are defined by (4.28), (4.42) and (4.53), respectively, and
δv(r) = v(x + r) − v(x). These laws are valid in the inertial range for both statistically
stationary turbulence and for freely decaying turbulence under the conditions
discussed in § 2.1. It is important to emphasize that these laws are valid for anisotropic
turbulence as well as isotropic turbulence and, therefore, are fundamental for the study
of plasma turbulence in nature where statistical isotropy is often not satisfied.
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What is the physical meaning of the laws (7.1)–(7.3)? The divergence law (7.1)
expresses the fact that energy is conserved during the energy cascade process. In other
words, the divergence law (7.1) is equivalent to the statement ΠK = ε for all K in the
inertial range. For this reason, (7.1) is called the law for the inertial range energy flux.
The proof consists of two parts. If ΠK = ε = const for all K � K0, then, as shown
following (6.13), ∇ · F = − 4ε. On the other hand, if ∇ · F = − 4ε, then it follows
readily from (5.1) that ΠK = ε. This completes the proof. Similarly, the divergence
laws (7.2) and (7.3) are equivalent to the conservation of the fluxes of cross-helicity
and magnetic helicity in the inertial range, respectively.

The theory indicates that the quantity 〈b · (δv × δb)〉 has special significance. The
result (7.4) shows that this third-order moment is constant in the inertial range,
independent of the scale r of the fluctuations, and is equal to the inverse cascade rate of
magnetic-helicity. It is remarkable that this quantity does not depend on the magnetic
vector potential. Consequently, this formula provides a practical means of determining
the cascade rate of magnetic-helicity from experimental data. The presence of a strong
mean magnetic field b̄ yields the approximation 〈b · (δv × δb)〉  b̄ · 〈δv × δb〉.

Similar to the four-thirds law (1.5) for hydrodynamic turbulence, the theory implies
that for homogeneous and isotropic, but not necessarily mirror symmetric MHD
turbulence, the vector third-order moments take the form

F(r) = − 4
3
εr, FC(r) = − 4

3
εC r, FM (r) = − 1

3
εM r. (7.5)

The first two equations are called the four-thirds laws for homogeneous isotropic
incompressible MHD turbulence. Note that the radial (longitudinal) components of
the equations for F and FC in (7.5) are equivalent to the laws derived by Politano &
Pouquet (1998a)

〈[|δv(r)|2 + |δb(r)|2]δv‖(r)〉 − 2〈[δv(r) · δb(r)]δb‖(r)〉 = − 4
3
εr, (7.6)

−〈[|δv(r)|2 + |δb(r)|2]δb‖(r)〉 + 2〈[δv(r) · δb(r)]δv‖(r)〉 = − 4
3
εCr. (7.7)

The radial (longitudinal) component of the equation for FM in (7.5) is

〈(a′ · b)v‖ − (a′ · v)b‖ − (a · b′)v′
‖ + (a · v′)b′

‖〉 = − 1
3
εMr, (7.8)

where a = a(x), a′ = a(x + r), v‖ is the component of v in the r-direction, etc., and x
is a dummy variable. The last two terms on the left-hand side of (7.8) are not found
in (17) of Politano et al. (2003). Therefore, the result (7.8) derived here does not agree
with that of Politano et al. (2003). One difference between the formulation of Politano
et al. (2003) and the present work is the definition of the cascade rate εM ; the value
of εM defined in equation (13) of Politano et al. (2003) is half the value defined by
(4.52). However, this does not resolve the discrepancy between (17) of Politano et al.
(2003) and (7.8) above.

The discrepancy arises from the fact that, by construction, (4.52) is symmetric
with respect to the interchange of x and x ′, whereas the expressions derived
by Politano et al. (2003) appear to lack such symmetry. The symmetry in (4.53)
implies FM (−r) = −FM (r). In the special case when the turbulence is isotropic, the
statistical third-order moment FM (r) is constrained by tensor analysis to have the
form FM (r) = Ar so that the condition FM (−r) = −FM (r) necessarily holds. The last
two terms in (7.8), like the second term in (4.53), are necessary if FM (r) is to have
the correct symmetry. However, when the different definitions of εM are taken into
account, (17) of Politano et al. (2003) implies (7.8).
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